Regulation of p53 oligomerization by Ras superfamily protein RBEL1A

نویسندگان

  • Ki Lui
  • M. Saeed Sheikh
  • Ying Huang
چکیده

UNLABELLED Our previous studies showed that RBEL1A overexpressed in multiple human malignancies and its depletion by RNAi caused severe growth inhibition in tumor cells. We also showed that RBEL1A directly interacted with p53 and such interactions occurred at the oligomeric domain of p53. However, the effect of such interactions on p53 oligomerization and function remained to be investigated. Here, we report that the interaction of RBEL1A and p53 suppressed p53 oligomer formation in unstressed cells and in cells exposed to DNA damage. Furthermore, purified RBEL1A blocked the oligomerization of recombinant p53 corresponding to residues 315-360 in vitro. RBEL1A also significantly reduced the oligomerization of the exogenously expressed C-terminal region (residues 301-393) of p53 in cells. Overexpression of RBEL1A (as seen in human tumors), also suppressed oligomerization by endogenous p53. Our results also showed that GTPase domain of RBEL1A at residues 1-235 was sufficient to block p53 oligomerization. Furthermore, silencing of endogenous RBEL1A significantly enhanced the formation of p53 oligomeric complex following ultraviolet radiation-mediated DNA damage and RBEL1A knockdown also enhanced expression of p53 target genes. Taken together, our studies provide important new molecular insights into the regulation of p53 and the oncogenic role of RBEL1A in the context to human malignancy. IMPLICATIONS Elevated RBEL1A expression in human tumors could negatively regulate p53 by inhibiting its tetramerization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negative regulation of p53 by Ras superfamily protein RBEL1A.

We had previously reported that RBEL1A, a novel Ras-like GTPase, was overexpressed in multiple human malignancies and that its depletion suppressed cell growth. However, the underlying molecular mechanism remained to be elucidated. Here we report that depletion of endogenous RBEL1A results in p53 accumulation due to increased p53 half-life whereas increased expression of RBEL1A reduces p53 leve...

متن کامل

تغییرات بیان ژنهای P53 ، Cyclin-D1 ، RB1 ، c-Fos ، N-ras در هپاتوسلولار کارسینوما در ایران

Background: Hepatocellular carcinoma is the most common primary malignant tumor of the liver. The effect of some genes especially those involved in cell cycle regulation have been shown in the development of this cancer in several studies but there are some controversies about them yet. Materials and methods: The paraffin-embedded tissue samples of 25 patients (18 males and 7 females) with hep...

متن کامل

NEURL4 regulates the transcriptional activity of tumor suppressor protein p53 by modulating its oligomerization

p53 is a transcription factor that regulates important cellular processes related to tumor suppression, including induction of senescence, apoptosis, and DNA repair as well as the inhibition of angiogenesis and cell migration. Therefore, it is critical to understand the molecular mechanism that regulates it. p53 tetramerization is a key step in its activation process and the regulation of this ...

متن کامل

[What Can Study of Oligomerization of Proteins in the Process of Oncogenesis Bring Us?].

Many cellular proteins form oligomers. The equilibrium between monomeric and oligomeric states of these proteins is important for the regulation of protein activity. Modulation of the oligomerization equilibrium could be an interesting approach in the development of new therapeutic agents. This review summarizes information about protein oligomerization and modulation of this process, demonstra...

متن کامل

NORE1A is a Ras senescence effector that controls the apoptotic/senescent balance of p53 via HIPK2

The Ras oncoprotein is a key driver of cancer. However, Ras also provokes senescence, which serves as a major barrier to Ras-driven transformation. Ras senescence pathways remain poorly characterized. NORE1A is a novel Ras effector that serves as a tumor suppressor. It is frequently inactivated in tumors. We show that NORE1A is a powerful Ras senescence effector and that down-regulation of NORE...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015